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Abstract

In-vitro to in-vivo correlations (IVIVC), relating in-vitro parameters like IC50 to in-vivo drug exposure in plasma and

tumour growth, are widely used in oncology for experimental design and dose decisions. However, they lack a deeper

understanding of the underlying mechanisms. Our paper therefore focuses on linking empirical IVIVC relations for small-

molecule kinase inhibitors with a semi-mechanistic tumour-growth model. We develop an approach incorporating

parameters like the compound’s peak-trough ratio (PTR), Hill coefficient of in-vitro dose-response curves, and xenograft-

specific properties. This leads to formulas for determining efficacious doses for tumor stasis under linear pharmacokinetics

equivalent to traditional empirical IVIVC relations, but enabling more systematic analysis. Our findings reveal that in-vivo

xenograft-specific parameters, specifically the growth rate (g) and decay rate (d), along with the average exposure, are

generally more significant determinants of tumor stasis and effective dose than the compound’s peak-trough ratio.

However, as the Hill coefficient increases, the dependency of tumor stasis on the PTR becomes more pronounced,

indicating that the compound is more influenced by its maximum or trough values rather than the average exposure.

Furthermore, we discuss the translation of our method to predict population dose ranges in clinical studies and propose a

resistance mechanism that solely relies on specific in-vivo xenograft parameters instead of IC50 exposure coverage. In

summary, our study aims to provide a more mechanistic understanding of IVIVC relations, emphasizing the importance of

xenograft-specific parameters and PTR on tumor stasis.

Keywords IVIVC � PKPD modelling � Tumour growth inhibition � Xenograft studies

Introduction

Pharmacology research projects typically begin by inves-

tigating the mechanisms of drug action in simple systems,

such as cultured cells in a dish, known as in-vitro experi-

ments. Subsequently, these studies progress to explore

more complex and living systems, including rodents, larger

animals, and ultimately human subjects in clinical trials,

known as in-vivo experiments. These investigations

involve assessing the drug’s efficacy, its exposure (i.e., the

amount of drug present in blood plasma) in the living

system, and its tolerability for any potential unwanted side

effects.

To facilitate clinical decision-making, it is crucial to

establish the translatability of results from simple in-vitro

systems to more complex in-vivo systems. This translata-

bility is essential for interpreting study outcomes, design-

ing experiments, and enabling studies in higher species [1].

In order to address this need, the use of in-vitro to in-vivo

correlation (IVIVC) studies is necessary [2]. These studies,

particularly focus on investigating drug efficacy, often

establish a relationship between a specific aggregated in-

vitro parameter and the required drug exposure in plasma,

thus explaining a particular drug-induced effect.

In pre-clinical oncology studies, for instance, the in-vivo

parameter of interest is tumour growth inhibition (TGI),

which is evaluated through a xenograft study comparing

the treated group to the control group at a specific time
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point. Similarly, the corresponding in-vitro parameter

could be the IC50 value obtained from a 2-dimensional or

3-dimensional proliferation assay, or a biomarker assay

that takes into account the in-vivo drug concentration.

Recently, the availability of systematic collections of

public data for small therapeutic molecules has greatly

facilitated IVIVC investigations. In a recent study [3], a

diverse set of 164 small molecules representing different

therapeutic indications, various modes of action (such as

antagonists and partial agonists), and receptor types (in-

cluding inhibitors of G-protein coupled receptors, ion

channels, kinases, nuclear receptors, etc.) were examined.

The researchers discovered that the ratio of the free plasma

concentration (adjusted for plasma protein binding) to the

in-vitro cell proliferation IC50 value followed a sigmoid

curve, when correlated with the cumulative clinical effi-

cacy of the compounds.

Above findings suggest that there exists a classical,

logistic pharmacological exposure-response relationship

in-vivo. The study further revealed that for 80% of the

compounds, full efficacy was achieved when the afore-

mentioned ratio fell between 0.007 and 8, with an average

IC50 coverage of 0.32 of the free plasma concentration. In

another oncology study with a stronger clinical focus,

Goldstein and colleagues [4] analyzed 21 receptor tyrosine

kinase inhibitors and 4 PARP inhibitor small-molecule-

based cancer therapies. They found that for 76% of the

compounds, the ratio of free plasma concentration to the

reported IC50 value ranged from 0.4 to 4.

The latter study emphasizes the potential of leveraging

in-vitro information and clinical pharmacokinetics (PK) for

dose finding in oncology [1]. However, estimating doses

based solely on in-vivo coverage of a specific in-vitro IC50

value can be challenging [5]. Even in pre-clinical settings,

in-vitro proliferation IC50 values can vary significantly

across different cell cultures when exposed to the same

compound, spanning several orders of magnitude [6].

Nevertheless, such IC50 coverage laws by projected

pharmacokinetic properties have been recently proposed as

a scoring mechanism for compound selection and prioriti-

sation in early compound design and optimisation [7].

The complexity of studying IVIVC is further increased

in mouse xenograft studies, where different tumour cell

lines are implanted to study tumour growth and drug-in-

duced inhibition. In particular, the emergent properties of

3D tumour growth specific to the cell types used can

introduce further variability in tumour response, incorpo-

rating features that are not present in in-vitro cell assays.

These features may include in-vivo tumour drug exclusion,

tumour cell-stroma interaction, and immune modulation of

the tumour microenvironment. Furthermore, in clinical

settings, factors such as high patient heterogeneity, toxicity

limitations, and study and cohort biases contribute to

additional uncertainties in dose-response predictions.

Taken together, these factors underscore the challenges

associated with translating in-vitro information to clinical

dose determination in oncology. While in-vitro data and

clinical PK provide valuable insights, it is important to

consider the complexity and variability introduced by in-

vivo and clinical settings when making dose predictions.

To partly address the heterogeneity observed in pre-

clinical research, semi-mechanistic mathematical models

that link pharmacokinetics (PK) to pharmacodynamics

(PD) and tumour growth have been developed (referred to

as PK/PD/TGI models) [8–11]. These models aim to cap-

ture the tumour evolution in mouse xenografts throughout a

xenograft experiment by incorporating temporal PK pro-

files with various dosing schemes and in-vitro IC50

parameter values for cell growth or target engagement.

Additionally, they incorporate xenograft-specific growth

and drug response parameters to account for the 3D fea-

tures mentioned earlier. These models have shown success

in pre-clinical research.

Given the success of semi-mechanistic modelling in pre-

clinical research, we were interested in exploring whether

dosage decisions based on IVIVC relationships can also be

understood using these models. Initially, our analysis will

focus on situations with negligible absorption phases and

Hill functions with a coefficient of 1 and will be subse-

quently extended to more general conditions. By leverag-

ing semi-mechanistic modelling, we aim to gain insights

into the relationship between PK, PD, tumour growth, and

dosage decisions. This approach may provide a more

comprehensive understanding of the complex interplay

between drug exposure, in-vitro IC50 values, and tumour

response

The structure of the paper is as follows. In the methods

section, we will review the Mayneord-like model structure

for linear radius growth (Sect. 2.1) and extend it to study

drug action (Sect. 2.2). We will introduce a procedure to fit

tumour growth data using IC50-normalized exposures,

following the method proposed by [3] to establish an

IVIVC. We will also provide an overview of the legacy

data set used (Sect. 2.4) and define some nomenclature

(Sect. 2.5).

In the results section, we will utilize our Boehringer

Ingelheim legacy data of reversible and irreversible MAP

kinase (MAPK) inhibitors to demonstrate that tumour

growth inhibition of xenograft data can be fitted by IC50-

normalized drug exposures or concentrations. This allows

us to determine the necessary IC50 coverage for tumour

stasis and the efficacious dose for a typical compound of

that class, assuming linear pharmacokinetics.

We will then present the semi-mechanistic model in

Sect. 3.2, which includes xenograft model specific
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parameters (growth rate (g) and decay rate (d)). This model

will serve as the foundation for further discussions.

In Sect. 3.3, we will show that IC50-based coverage

laws for efficacy are equivalent to our modeling formalism

under certain PK assumptions, providing a more funda-

mental justification for the previously empirically deter-

mined IVIVC curves.

Utilizing these model-informed coverage laws for stasis

in Sect. 3.4, we will find that xenograft parameters g and

d are often more decisive determinants of tumour stasis

compared to variations in the peak-trough ratio between

different compounds with the same exposure and IC50

values.

Section 3.5 will explore two relaxations of our under-

lying pharmacokinetic (PK) assumptions. At first (Sect.

3.5.1) we included a non-negligible absorption phase into

our PK, albeit under the assumption that absorption and

elimination processes can be well separated in time. At

second (Sect. 3.5.2), we considered cooperative effects in

the compound’s efficacy (Hill coefficient 1 in the PD

function). For such cases, our results will suggest that, as

the Hill coefficient increases, the peak-trough ratio

becomes a more crucial parameter for tumour stasis than

the average concentration or exposure, indicating a shift

away from simple exposure-drivenness towards a

cmax=ctrough-driven realm. This also highlights the depen-

dence of cmax=ctrough or AUC-drivenness on individual

cancer models.

In Sect. 3.6, we will use the model-informed coverage

formula to explain variability in the empirical IVIVC

curves, which, to our best knowledge, has not been yet

mathematically thoroughly investigated.

Finally, in Sect. 3.7, we will expand our investigation to

drug efficacy in a population characterized by IC50, g, and

d. Through this, we will propose a resistance mechanism

based on the g/d ratio in pre-clinical and clinical cohorts

that is independent of drug efficacy and dose levels.

Methods

Analysis of tumour growth assuming
a proliferating rim

In the further, we will focus on models of a specific class.

These models use biological findings that tumour growth is

driven by an outer layer of cancer cells that are growing

exponentially while tumours having a necrotic core [12].

This approach is quite commonly used for studying tumour

growth in xenograft studies and has been well described

and tested [13–15].

The approach used in this paper is based on a model and

its validation to rat sarcoma xenografts published by

Mayneord in 1932 [16] where tumour radius increases

linearly over time, and hence, tumour volume grows with

third order. Therefore, we will denote these models as

Mayneord-like models troughout the manuscript. We note

that besides such linear radius growth models also other

approaches have been pursued in the field[17, 18].1

We briefly describe the method of Mayneord [16] here

for convenience. For simplicity, [16] assumed that tumour

growth is driven by an outer layer of cells with a small,

temporally constant, but finite thickness Dr � r and that

the tumour that can be mapped onto a spherical shape. The

first assumptions reflects the fact that every tumour of

radius r has a necrotic core absent of living cells. Hence,

the total volume of the tumour with radius r is the sum of

volume of rim and core,

Vtotal ¼ Vrim þ Vcore ¼
4

3
pr3 ; ð1Þ

with volume of the outer rim Vrim given by

Vrim ¼4=3 p r3 � r � Drð Þ3
� �

¼4 p r2 Dr þ o Dr2Þ
� �

;
ð2Þ

whereby we can neglect the higher order terms of Dr for

Dr � r.

As typical in studying growth processes, we assume first

order growth of the tumour volume with the proliferation

rate a, but confining us to proliferation to the cells in the

outer rim. We therefore get

dVtotal

dt
¼ aVrim ¼ 4 a p r2Dr : ð3Þ

We now study the evolution of the total tumour radius r

instead of the total volume dVtotal in Eq. (1)

dr

dt
¼

dr

dVtotal

�
dVtotal

dt
¼

1

4pr2

� �

dVtotal

dt
: ð4Þ

which by inserting Eq. (4) in Eq. (3) gives for the temporal

change of the tumour radius,

dr

dt
¼

1

4pr2

� �

4 a p r2Dr
� �

¼ aDr :¼ g; ð5Þ

with introducing the growth rate g ¼ aDr for convenience

reasons and assuming the thickness of the proliferating rim

Dr constant over time. We hence obtain the following

tumour grow for Mayneord-like models

1 Some models use exponential volume growth over time. We note

that in case of slow growth, these models may be equivalent to ours

since a Taylor-series expansion can be assumed. Moreover, specif-

ically under treatment, tumour growth is slow and proliferation may

hence be still in the first order regime.
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rðtÞ ¼ R0 þ g t ; ð6Þ

with the initial tumour radius R0 as integration constant.

Therefore, based on the Eq. (6), it can be inferred that

under the assumption of a small growing rim relative to the

radius (Dr � r), the tumor radius can be assumed to

growth linear with time and hence the tumour volume

grows with third order.

Semi-mechanistic model for studying preclinical
in-vivo tumour growth and drug-induced decay

As demonstrated in the previous subsection, it is reasonable

to assume approximate tumor growth by a linear change of

the tumour radius over time in the presence of a large

necrotic core. These Mayneord-like models have been

recently extended by us and other researchers [5, 19, 20] to

investigate the reduction of tumor growth through phar-

macological intervention using a compound.

In this context, the pharmacological action depends on

both the drug exposure in the system over time (i.e.,

pharmacokinetics) and the in-vitro potency. The measure

of in-vitro potency, IC50, can be obtained from a con-

ventional in-vitro experiment, such as a drug-induced cell

growth inhibition assay.

The dose-response of such assays is typically described

by a Hill function, f ðcplasma;freeðtÞÞ,

f ðcplasma; freeðtÞÞ ¼
cplasma; freeðtÞ

hill

cplasma; freeðtÞ
hill þ IC50hill

: ð7Þ

Here, cplasma;freeðtÞ represents the concentration of the

compound in the free plasma, hill denotes the Hill coeffi-

cient, and IC50 corresponds to the concentration at which

half of the maximal effect is observed. In the in-vivo

context, the concentration becomes a function of time and

is derived from the output of a pharmacokinetic model.

Moreover, we assume that the IC50 values originate

from in-vitro proliferation experiments with sustained drug

exposure, representing an aggregated value of in-vitro anti-

tumor drug efficacy over time. Additionally, our model

implicitly assumes the validity of the free plasma drug

hypothesis and does not explicitly incorporate time delays

between the free plasma drug concentration, cplasma;free, and

the effect at the target site.

Besides the influence of in-vitro pharmacology property

f ðcplasma;freeÞ on tumour growth, further properties emerge

when studying whole 3D tumours. Such properties would

be the permeability of the tumour to the compound, the

content of tumour cells vs. stroma, co-operative effects

between the cells in the tumour and so forth. These effects

are specific to the human tumour cells implanted in a

mouse and to the mouse strain.

While these effects are very complex, experience in our

pre-clinical research informs us that they can for practical

purposes be lumped into one parameter (the decay

parameter d). This parameter therefore links tumour

reduction to in-vitro pharmacology and aforementioned

emergent in-vivo effects. This approach is further moti-

vated in Appendix 6.

Based on above reasoning, the approach of [5, 19, 20],

studies tumour evolution over the course of a xenograft

experiment with the starting radius R0 as follows,

dr

dt
¼g � d f ðcplasma; freeÞ:

R ¼R0 þ gs � d

Z

s

0

cplasma; freeðtÞ
hill

cplasma; freeðtÞ
hill þ IC50hill

ds ;
ð8Þ

with the decay rate d as motivated above, while g denotes

the above motivated linear tumour growth rate over time.

Both, the tumor growth and decay rates, are intrinsic

properties of the in-vivo 3D tumor and depend on the

specific cell graft mouse model employed.2 This allows for

their reuse in studying different compounds with a similar

mode of action as demonstrated in Appendix 6. Further-

more, these rates are assumed to be independent of the

specific in-vitro pharmacology [14, 19].

As concluding remark, is important to note that the

model framework distinguishes between compound-speci-

fic in-vitro pharmacology effects and in-vivo specific

xenograft information related to tumor growth and drug-

induced decay.

Calculation of tumour growth inhibition
and IVIVC curves

Throughout the manuscript, tumour growth inhibition is

given by the fraction of change of tumour volume during a

treatment period and the change of tumour volume of

untreated/sham treated controls over that same period

(V treated
tumour and Vcontrol

tumour , respectively). Hence, this gives us

TGI ¼ 100 � 1�
V treated
tumour ðendÞ � V treated

tumour ðstartÞ

Vcontrol
tumour ðendÞ � Vcontrol

tumour ðstartÞ

� �

: ð9Þ

In the results section, we will fit the relationship between

the free average unbound plasma concentration, free in-

vitro IC50 and TGI by the following logistic curve,

2 We would like to emphasise here, that also the in-vitro IC50 is

specific of the tumour cell graft model used (and is accordingly

measured in in-vitro assays). However, to distinguish this xenograft

specific feature from those that emerge in 3D in-vivo tumours of a

specific xenograft type (characterised by g and d), we will denote the

latter as in-vivo specific xenograft properties in the text.
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TGI ¼
TGImax � TGImin

1þ PDinflex=
caverage;ub
IC50

� �hillexp
; ð10Þ

or using the area under curve of the unbound concentration

over time cubðtÞ over a dosing interval s, AUCub

TGI ¼
TGImax � TGImin

1þ s � PDinflex=
AUCub

IC50

� �hillexp
: ð11Þ

Here PDinflex is the inflection point, hillexp the Hill coeffi-

cient and TGImax, TGImin the maximum and minimum TGI

values of the fitting curve, respectively, as given in the

figure captions of Fig. 1. The logistic curve is here purely

heuristic and awaits a pharmacological interpretation.3

The empirical relation, Eq. (10), now allows us to esti-

mate a required dose for a TGI of 100 percent, i.e. tumour

stasis. We therefore have introduced a dose normalised

unbound AUC (AUCDN;ub). Assuming dose linearity, we

use scaling to calculate a stasis dose dosestasis,

TGI ¼ 100; AUCub ¼ dosestasis � AUCDN;ub : ð12Þ

Plugging (12) in Eq. (10) we obtain for the stasis dose

dosestasis

dosestasis ¼
PDinflex

TGImax�TGImin
100

� 1
� �1=hillexp

IC50

AUCDN;ub=s
: ð13Þ

Illustration data

Data to illustrate modelling results in the manuscript were

obtained from 86 mouse xenograft experiments (6 different

xenografts, 12 reversible and covalent MAP kinase in-

hibitor compounds). Unbound IC50 values were taken

from anti-cell proliferation measurements with 5 days

incubation with the drug and ranged from 0.2-700 nM

(median: 7.7). Total AUC ranged from 1.84-4141 nM*h

(55), unbound fraction 0.04�2.3% (0.53) and study time

� 14 days of repeated qd or bid dosing. Control frac-

tionation experiments with same daily dosing revealed no

difference between qd and bid dosing for the specific set.

Nomenclature

Throughout the manuscript, in-vitro IC50 and all in-vivo

drug concentrations cmax; ctrough; caverage resp. exposures (all

AUC) were assumed as free drug fractions, hence being

already corrected for plasma protein binding in the

respective systems. Whenever of importance, this will be

noted explicitly.

We further give information about the most commonly

used terms in a Glossary, Sect. 4.

Results

Inferring efficacious doses from free plasma
concentration, in-vitro efficacy and in-vivo

tumour growth inhibition

It has been previously demonstrated that drug response in-

vivo can be related to the plasma concentration of the free

drug and in-vitro efficacy (as measured by in-vitro IC50

curves)4, [3]. Specifically, in an oncology context, a rela-

tion between tumor growth inhibition (TGI) and the frac-

tion between the average free plasma concentration and

Fig. 1 A pre-clinical IVIVC relationship between tumor growth

inhibition and IC50-exposure coverage using data from Boehringer

Ingelheim’s internal projects on receptor kinase inhibitors. A sigmoid

fit curve is provided according to Eq. (10)

3 One of the motivations is as follows: Consider an idealized scenario

where a set of compounds binds to a target with varying degrees of

inhibition strength, assuming the same target engagement character-

istics and mode of action. Additionally, assume that these compounds

have no off-target effects. In such a scenario, any response curve

obtained using this set of compounds at identical doses or exposures

would yield the same pharmacological response curves as using a

single compound at different doses.

4 Here, the IC50 is defined as the concentration of the drug that

inhibits 50% proliferation of tumor cells in an in-vitro experiment.

Sometimes, this factor is also referred to as EC50 to differentiate it

from the biochemical inhibitory capacity (IC50) of the drug towards

the target. However, for the sake of consistency, we use IC50 in the

aforementioned sense in this paper. It is also worth noting that these

experiments are typically conducted in the presence of fetal calf

serum and therefore need to be adjusted for plasma protein binding

(free IC50). For simplicity, we consider the IC50 as the free IC50

throughout the paper.
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free IC50 has been observed [3, 4]. We therefore aimed to

replicate such findings with in house data.

For validation purposes, we utilized data from Boeh-

ringer Ingelheim’s internal compound library on MAPK

inhibitors (see Fig. (1)). We plotted TGI against the frac-

tion of the average free concentration over free IC50,

where each dot represents a xenograft study involving 6

different xenografts and 12 compounds. We then fitted a

curve to the logistic function as defined in Eq. (10) from

the methods and obtained the following parameters:

PDinflex = 0.25, hillexp = 0.89, TGImax = 125, TGImin = 0.

With this fitting parameters and assuming dose linearity,

we were able calculate a stasis dose by Eq. (13) from the

methods

dosestasis ¼
PDinflex

TGImax�TGImin
100

� 1
� �1=hillexp

IC50

AUCDN;ub=s
; ð14Þ

and obtained

dosestasis �29:8 �
IC50

AUCDN;ub
ð15Þ

dosestasis �1:24 �
IC50

caverage;DN;ub
; ð16Þ

where we also have introduced the dose-normalised aver-

age concentration (caverage;DN;ub) and assumed a s ¼ 24h

dose interval, hence

caverage;DN;ub ¼ AUCDN;ub=s: ð17Þ

The relations (15, 16) suggest that the required tumour

stasis dose (dosestasis) for an ‘‘average’’ compound of this

IVIVC relation is proportional to the IC50 of the com-

pound divided by either the dose normalised AUC

(AUCDN;ub) or dose-normalised average concentration

(caverage;DN;ub).

We therefore have defined the inverse of the (compound

and in-vitro model-specific) factors in Eqs. (15) and (16)

caverage;DN;ub

IC50
and

AUCDN;ub

IC50
; ð18Þ

as IC50 coverage factors for caverage;DN;ub and AUCDN;ub,

respectively.

These parameters will play a crucial role in our further

investigations to study the required coverage of IC50 by

the average concentration or by the time-integrated expo-

sure over a dosing interval.5 As evident from Fig. (1) and

Eq. (17), both factors exhibit a monotonous trend in rela-

tion to tumor growth inhibition (TGI).

Relating empirical efficacious doses
to mechanistic TGI Modelling

Above results related the inverse of the compound specific

coverage factor (18) to tumour stasis. As this result is only

grounded on empirical data, our objective was to ground

these findings on a more mechanistic understanding of

tumour growth.

Therefore, we asked if a similar relation could be

established by using a standard PK/TGI mechanistic

model. We therefore have used a model that has been

shown to describe the underlying tumour growth mecha-

nism quite well [13, 16, 19] and hence is heavily used in

our Boehringer Ingelheim team for in-vivo xenograft study

design. For the purpose of the paper, this model is therefore

assumed as a fairly accurate coarse-grain description of the

underlying tumour growth mechanism, hence being

assumed as the ‘‘ground truth’’.

The model was described in the methods Sect. (2.2). As

shown there, we have used a combine model of tumour

growth and drug-induced anti-tumour effect

dR ¼ g � d
cplasma; free

IC50þ cplasma; free

� �� 	

dt ð19Þ

R ¼R0 þ gs� d

Z

s

0

cplasma; freeðtÞ

IC50þ cplasma; freeðtÞ
dt; ð20Þ

Fig. 2 A typical pharmacokinetic behaviour for the free plasma

concentration over time cplasma;freeðtÞ is given for repeated dosing.

Accumulation over repeated dosing cycles leads to a steady state

behaviour of the daily exposure. The last dosing interval (in blue) has

been assumed to be in steady state and to provide sufficient exposure

to put the tumour to stasis (Color figure online)

5 It is important to note that our analysis does not aim to specify exact

dose units (such as nM or mg/kg), as we seek to maintain the

generality of our conclusions. Assuming that average unbound

concentrations and IC50 are both expressed in concentration units

of the same scale, the coverage factor would have units of inverse

dose and inverse dose multiplied by time, respectively. Yet, our

derivations remain valid as long as the dose and dose normalization

on both sides of the equations use the same scaling units throughout

the text, and as long as IC50 and caverage;DN;ub are expressed in the

same concentration units.
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with the dosing interval s and the initial tumour radius R0.

The TGI is then calculated from the volume at time t ¼ s

via the relation ( 9), Vol ¼ 4R3
p=3 in the presence and

absence of drug ðcplasma;freeðtÞÞ concentration, while g and

d are in-vivo xenograft specific parameters as described in

the methods.

Derivation of model-informed plasma
concentrations for tumour stasis

To further the objective of the previous section, we now

specifically asked for which IC50 coverage the above

tumour model above would predict stasis. We therefore

assumed that an equilibrium behaviour for the pharma-

cokinetics after multiple dosing has been achieved Fig. (2).

For tumour stasis, we then required that the compound

exposure at these later cycles (area under the blue curve) is

sufficient to halt tumour growth. This leads to the

requirement
Z

dR � 0 ¼ [ g s=d �

Z

s

0

cplasma; freeðtÞ

IC50þ cplasma; freeðtÞ
dt ;

ð21Þ

where we have used the free plasma concentration

cplasma;freeðtÞ over time as the major surrogate for anti-tu-

mour effect (know as free plasma concentration

hypothesis).6

We next assumed a first order kinetic approximation of

the free plasma concentration and again postulate dose

linearity. We further assume a fast and hence negligible

absorption phase and also assumed an Hill coefficient of 1.

We later included some relaxations to these conditions in

Sects. 3.5.1 and 3.5.2.

Hence, we have set

cplasma; freeðtÞ ¼ cmax e
�kt k ¼

1

s

ln
cmax

ctrough

� �

ð22Þ

where we have denoted the maximum (‘‘max’’) and mini-

mum (‘‘trough’’) free plasma concentration cmax and ctrough.

For brevity and by analogy reasons, we now define the

effective AUC, AUCeffect

AUCeffect ¼

Z

s

0

cmax e
�kt

cmax e�kt þ IC50
dt ð23Þ

and require a threshold for the stasis condition (21)

0 ¼ R� R0 ¼ gs � d AUCeffect ! AUCeffect ¼
g

d
� s :

ð24Þ

In the Appendix 7.1, we calculated Eq. (23) as

AUCeffect ¼
s

ln PTRð Þ
ln

cmax þ IC50

ctrough þ IC50

� 	

: ð25Þ

We have set here the Peak-trough ratio (PTR ¼ cmax
ctrough

) for

convenience as this ratio has manageable variation within

one compound class and can be estimated for typical small

molecule compounds in oncology projects.

Setting the effective AUC in (B9) into the stasis con-

dition Eq. (21), we were able to relate ctrough;stasis;ub,

cmax;stasis;ub and caverage;stasis;ub with the compounds PTR and

the tumour model specific parameters g and d. The detailed

derivation is given in Appendix 7.2 and we obtain.

ctrough;stasis;ub ¼IC50
PTRg=d � 1

PTR� PTRg=d

cmax;stasis;ub ¼IC50 � PTR
PTRg=d � 1

PTR� PTRg=d

caverage;stasis;ub ¼IC50 �
PTR� 1

ln PTRð Þ

PTRg=d � 1

PTR� PTRg=d
:

ð26Þ

By this, we have established sufficiency condition of above

concentrations to achieve tumour stasis when above

assumptions are met.7

Finally, we used Eq. (26) to scale again the dose such

that a stasis dose dosestasis is reached. We therefore replace

caverage by the total exposure over a dosing interval s

according Eq. (17) and assume again dose-linearity

Eq. (12),

dosestasis ¼
PTR� 1

ln PTRð Þ

PTRg=d � 1

PTR� PTRg=d

IC50

AUCDN;ub=s
: ð27Þ

For convenience, we define the factor

MEF PTR; g=dð Þ :¼
PTR� 1

ln PTRð Þ

PTRg=d � 1

PTR� PTRg=d
ð28Þ

¼
caverage;stasis;ub

IC50
; ð29Þ

which is dependent on the compound specific parameter

PTR and the in-vivo xenograft specific parameters g and d.

We will denote this factor as model efficacy factor which

will give us further insights into the driver of this stasis

dose and IC50 coverage by caverage;stasis;ub in the further

analysis.

6 We note that, while, as can be seen from Fig. (2), steady state may

not have been reached yet, Eq. (20) still provides a sufficient

boundary criterion for tumour stasis (with the equal sign indicating

the borderline condition for stasis).

7 We note that for constant concentrations cmax ¼ ctrough ¼ cconst
numerator and denominator in Eq. (16) will converge against 0.

Following the rule of de l’Hospital, it can easily be shown that

limcmax!ctrough caverage ¼ cconst.
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By this, we can conclude that the stasis dose dosestasis
can be reached either by optimising exposure over IC50 of

the compound (right factor, AUC-drivenness) or by opti-

mising MEF PTR; g=dð Þ (non AUC-drivenness).

Calculation of xenograft-model specific IC50
coverage for tumour stasis

Based on the defined coverage laws (26), we now aimed to

systematically investigate their dependency on compound

(PTR, IC50) and in-vivo xenograft specific parameters (g

and d). In line with our internal data set, we used steady-

state PTRs with 10-300 and a typical xenograft with a g/d

ratio of 0.4 as observed in our pre-clinical studies. We then

calculated necessary coverage for ctrough;stasis, cmax;stasis and

caverage;stasis (26) for tumour stasis.

Results are shown in Fig. 3 and indicate that for tumour

stasis, IC50 coverage of the average unbound plasma

concentration is essential, and less dramatically dependent

from min-max variations (PTR). These results suggest

‘‘AUC drivenness’’ in xenografts and compounds with

above properties.

We then investigated how the coverage factor Eq. (28)

changes for the different xenograft models characterised by

given g/d ratio with PTR range of 40-150. We therefore

plotted the model efficacy factor in Fig. 4. We observed

that, when g/d ratios change between 0.3 and 0.7, these

efficacy factor (and hence IC50 coverage factors) range

from half IC50 coverage to about 10-fold coverage for our

MAPK inhibitor compounds.

As expected, low g/d ratios (left edge), consistent with

slow growing and relative sensitive xenograft models,

required little IC50 coverage (on top of these cell-specific

xenografts having potentially also a lower in-vitro IC50).

In turn, when the growth rate increases relative to the decay

rate g=d ! 1, high IC50 coverage is necessary for tumour

stasis.

Interestingly, these coverage results were again mildly

dependent for most assumed pre-clinical PTRs and g/d be-

tween 0.3 and 0.7, suggesting that ‘‘AUC drivenness’’ also

mostly holds also for mildly sensitive to mildly resistant

xenografts and compounds with reasonable max/trough

variations.

Fig. 3 The ratio between the required IC50 coverage for tumour stasis

for cmax (dashed line), caverage (solid line) and ctrough (dotted line). We

see that for typical pre-clinical PTRs of oncology compounds and a

reasonable g/d ratio of 0.4, a caverage coverage of about 2 is suggested.

The high necessary cmax coverage for larger PTR is to compensate for

the less durable target engagement for such low terminal half-life

compounds

Fig. 4 The model efficacy

factor MEF given for the

depicted Peak-Trough-ratios

and different fractions of g/d.

This factor indicates necessary

IC50 coverage by caverage;ub;stasis
for stasis. The dashed line

indicates MEF = 2. Inlet shows

the same plot on a semi-

logarithmic axis. PTRs were

taken from compounds in

Fig. 1. For model used in our

research, g/d ratios for

xenografts were in the range

0.3�0.7 (cf. Fig. 8 for our

analysis of compounds.)
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Overall, these result indicate that the type of xenograft

(besides influencing efficacy per se) influences the extent

as to how efficacy is dependent on the compound’s PTR.

We have thereby also obtained a more mechanistically

grounded understanding of our empirical findings in (16),

relating the fitting factor in (16) to xenograft- (g/d) and

compound-specific (PTR) properties.

Expanding the validity of the findings through
relaxations of assumptions

For didactic purposed, we have assumed a negligible

absorption phase and a Hill coefficient of 1 in our previous

derivation. We now make two relaxations, whereby

Relaxation 1 leaves the formalism unchanged, while

Relaxation will provide further insights into the specific

pharmacokinetic drivers of anti-tumor effect, once hill[ 1

(often denoted as drug co-operativity8).

Relaxation 1: application to situations with non-negligible

absorption time

Above derivations were performed under the assumption of

an exponential decay from cmax to ctrough at the entire

dosage range. This may be considered as a crude

assumption as orally (or other non i.v.) administrated

compounds may show a non-negligible absorption phase.

Therefore, in Appendix 8, we demonstrated that above

derivations still hold, when the absorption phase is not

negligible and maximum concentration cmax is achieved at

a certain time tmax. We therefore had to postulate that

absorption and elimination phase have different temporal

dynamics (hence no flip-flop kinetics), which well holds for

the investigate MAPK inhibitors reported here.9

Relaxation 2: tumour stasis conditions for compounds

with hill „ 1

An Hill coefficient different to one is often found in the in-

vitro function Eq. (7) and is associated with positive or

negative co-operative effects of the compound.

Therefore, we have repeated calculations of Sect. 3.3 for

situations with hill 6¼ 1 as described by

R ¼ R0 þ gs� d

Z

s

0

cplasma; freeðtÞ
hill

IC50hill þ cplasma; freeðtÞ
hill

dt :

ð30Þ

Using an exponential decay of the free plasma concentra-

tion from cmax to ctrough we then exploited the fact that the

potency of an exponential function gives another factor in

the exponential e�kt
� �hill

¼ e�kt�hill.

The derivation followed the line of subsection 3.3 and

we finally obtained,

dosestasis ¼ MEF PTR; g=d; hillð Þ
IC50

AUCDN;ub=s
ð31Þ

¼MEF PTR; g=d; hillð Þ
IC50

caverage;DN;ub
ð32Þ

with

MEF PTR; g=d; hillð Þ ¼
PTR� 1

ln PTRð Þ

PTRg�hill=d � 1

PTRhill � PTRg�hill=d

� 	1=hill

:

ð33Þ

Based on equation Eq. (33), we observed that the Hill

coefficient appeared as an additional factor in the exponent

of the PTR. Indeed, numerical simulation shown in Fig. (5)

Fig. 5 The model efficacy factor MEF which describes the necessary

IC50 coverage for caverage;ub;stasis. We observed that the average

concentration of the compound that is necessary to cover the in-vitro

IC50 for stasis becomes increasingly dependent on the PTR for Hill

coefficients [ 1

8 This is an analogy to the discovery of the Hill function where co-

operativity between oxygen-binding sites in hemoglobin was

observed, such that binding of one oxygen molecule facilitated the

binding of others.

9 For other compounds with a one compartment model with first-

order absorption, a Bateman function would be needed to be used

[21], which would severely aggravate the mathematical analysis.
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revealed that Hill coefficients hill[ 1 made

MEF PTR; g=d; hillð Þ of the necessary unbound average

concentration (15), or AUC exposure (16), for tumour

stasis, highly dependent on PTR.

These findings indicate that adjusting the PTR of a

compound, while keeping its total exposure or average

concentration constant, becomes more crucial in achieving

an anti-tumor effect compared to merely changing the

average concentration per se.

These observations can be easily understood. When

compounds with the same average concentration have

higher PTRs, their IC50 coverage in the anti-tumor

response is less enduring according to the model in

Eq. (30). Of note, this less enduring IC50 coverage can

often not be compensated by higher cmax values, once the

Hill function Eq. (7) of the pharmacodynamic effect is

saturated.10

This PTR-dependent response effect is even more pro-

nounced for higher Hill coefficients, which correspond to

steeper logistic curves. Consequently, the PTR and the

elimination half-time under stasis conditions become

increasingly critical for the anti-tumor effect when drug co-

operativity is increased (hill[ 1).

We finally note that the argument of Sect. 3.5.1

remained valid and, hence, assuming a separate absorption

and elimination did not change our results, and both

relaxations were combinable (the effect of the absorption

phase is accounted for in the PTR).

Understanding variability in the IVIVC by semi-
mechanistic modelling

Using the model efficacy factor MEF(PTR, g/d) and the

results of Fig. (5), we now can aim to explain a source of

variability in the empirical relation between TGI, free

IC50, and free average concentration.

Looking specifically into our data set, we observed

higher variability at stasis conditions (TGI=100) for dif-

ferent xenografts (upper graph) than for different com-

pounds (lower graph) as seen in Fig. (6). These findings

were consistent with our theoretical analysis above that the

g/d ratio was more important than the PTR for the neces-

sary IC50 coverage at tumor stasis.

However, since certain compounds were preferably

studied in specific xenografts, both parameters were not

completely independently studied, and a thorough analysis

of the influence of PTR and g/d awaits further experimental

studies.

Extension of the method for studying efficacy
in clinical populations

We finally sketch how our IVIVC considerations may be

applied for studying drug efficacy in human populations,

such as informing dosage decisions in clinical trials.11

We therefore assumed that each human tumour may be

characterised by a certain IC50, and certain growth and

decay rates. We first assumed that we can obtain a distri-

butions of free IC50 from an in-vitro tumour cell panel that

reflects the sensitivity of individual tumour cells to a

specific compound (in a patient population and/or within an

individual tumour).

Furthermore, we assumed that g/d rates of individual

human tumours can be estimated from clinical data such as

Fig. 6 Variability in the empirical relation between TGI, free IC50

and free average concentration for the data set of Fig. 1 stratified

according different xenograft types (having different g/d ratios) and

different compounds (different PTRs; NB: compound IC50s are

accounted for in the abscissa)

10 Please note that that our analysis is designed to explore effective

doses to exactly cover tumor stasis. Therefore, we expect IC50 to be

centred between (or at least be close to) cmax and ctrough. Then,

increasing PTR and maintaining same exposure, shifts both PK

Footnote 10 continued

extrema away from the IC50 coverage line in opposite directions.

Consequently, compounds with high PTR are very likely to have

‘‘unproductive AUC’’ due to saturation of the Hill PD curve.
11 For purpose of the argument, we again assumed the special case of

hill=1.
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using longitudinal PET scans of tumours treated with

compounds with comparable mode of action. As example,

such longitudinal PET scan data of patient tumours are

provided by consortia like the Project Data Sphere Initia-

tive [22, 23].

Postulating that growth and decay rates are in-vivo

specific parameters independent from the compound‘s in-

vitro pharmacology (as in the pre-clinical case), we hence

used above derivations for a human clinical dose

estimation.

Replacing now single point estimates for IC50 and g/d

with statistical variables IC50½ 	 and g=d½ 	, we obtained12

dosehuman ¼ s �
PTR� 1

ln PTRð Þ

PTR g=d½ 	 � 1

PTR� PTR g=d½ 	

IC50½ 	

AUCDN;ub
:

ð34Þ

With this, we obtained with dosehuman a dose distribution

to treat a population of individual patients. As can easily

been seen from Eq. (34), no tumour regression can be seen

for patients with g� d (no positive doses). Notably, from

Eq. (34) we inferred that, if the statistical distributions of

tumour properties g and d of a given population have same

medians, the maximum population response would be

limited to 50%, independent of the compound’s potency.

We hence suggest that this formalism can describe a

tumour idiosyncratic treatment resistance mechanism that

is wired in the individual in-vivo tumour growth and decay

rates and that cannot be overcome by increased dosing.

Discussion

General learnings

This paper presents a theoretical analysis of the Mayneord-

like model, thereby investigating the drug-induced

response of tumours and its connection to tumour stasis.

Through our analysis, we have confirmed that the model

framework is in line with an empirical in-vivo to in-vitro

correlation (IVIVC). This correlation relates the free

plasma concentration or exposure of a specific compound

and its corresponding free in-vitro IC50 to the inhibition of

tumour growth (TGI) using a simple formula [3, 4].

Specifically, we have shown that under the assumption

of linear pharmacokinetics and the free plasma drug

hypothesis, tumour stasis is essentially driven by the IC50

coverage of the unbound plasma drug concentration

cav;ub=IC50ub (or, equivalently, coverage of time integrated

exposure AUCub=IC50ub), the compound’s PTR, and the

ratio g/d between the xenograft-specific tumour growth and

decay rate. Our results will have impact on selecting

appropriate xenograft models for proper clinical translation

and on the understanding of how co-operativity of drug

actions (hill[ 1) can determine cmax, ctrough and caverage-

drivenness.

Several further assumptions were made and the fol-

lowing specific conclusions were derived.

The mayneord-like model assuming linear tumour growth

Our analysis is centered around the unique characteristic of

the Mayneord-like model, which assumes linear tumour

growth over time. This model was derived from in-vivo

analysis involving whole tumour resection in Jensen’s rat

sarcomas, comparing untreated tissue (control) with tissue

treated with X-radiations [16]. The study revealed that

tumours grow alongside a rim, characterized by a necrotic

core that lacks proliferation. Therefore, mathematical

analyses have confirmed the intuitive assumption of sub-

exponential growth dynamics, specifically zero-order

growth.

It is important to note that certain idealizations were

made during the mathematical analysis. For instance, the

assumption of an infinitesimally small tumour rim and a

tumour that can be mapped on a spherical shape, which

may not hold true in experimental settings. Factors such as

tumour space limitations, increased tumour vasculariza-

tion, and changes in immune activity can also influence the

growth profile in various ways.

Nonetheless, the Mayneord-like model has proven to be

valuable in studying pre-clinical and clinical tumour

growth over the past decade [8, 24]. As similar approaches,

researchers such as Wang and colleagues, have utilized

nonlinear mixed effect models with linear growth (and

exponential decay) to describe response data in non-small-

cell lung cancer patients [25]. Additionally, other models

have been developed based on the assumption of sub-ex-

ponential tumour growth over time [26]. However, since

exponential tumour growth, specifically when relatively

slow (as observed in pre-clinical studies and slower-

growing human tumours), can always be approximated

using Taylor series expansion of tumour volume or radius,

our analysis provides a reasonable approximation. Cer-

tainly, further experimental studies in pre-clinical and

clinical settings that incorporate imaging and histology

would be beneficial for understanding tumour growth

dynamics in more detail.

A second specific feature of the Mayneord-like model is

the distinction between in-vitro pharmacology (defined by

the Hill function with an IC50 value determining the

inhibition of cell proliferation) and in-vivo-specific tumour

12 We deliberately assumed point estimations for and PTR dose-

normalised AUCDN;ub as they are characteristic for the compound

under investigation and, hence, their variability can be managed

compared to those in IC50½ 	 and g=d½ 	.
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growth and decay rates. These factors establish a connec-

tion between the in-vitro pharmacology of a specific

compound and in-vivo tumour growth.

While these factors are specific to a particular xenograft

model, they are generally assumed to be mostly indepen-

dent of the compound’s pharmacological profile, at least

within a compound class with a similar mode of action.

Various such in-vivo characteristics that cannot be captured

by in-vitro cell assays include in-vivo tumour growth/ag-

gressiveness, tumour drug exclusion, tumour cell-stroma

interaction, and immune modulation in the presence and

absence of treatment. Condensing these effects into just

two parameters is undoubtedly an oversimplification, albeit

one that has proven to be frequently useful in our pre-

clinical research.

Pharmacokinetics and posology assumptions

For our investigation, we have made certain assumptions

regarding the pharmacokinetics (PK) of the compounds.

Specifically, we have assumed dose-linear PK, where the

drug concentration in the body increases proportionally

with the dose. We have also considered a single daily dose

and steady-state kinetics, which involve separate first-order

absorption and elimination kinetics. While it is true that

many compounds exhibit exposure-limited effects at cer-

tain doses, assuming dose-linear PK is not overly restric-

tive for our analysis purposes. In fact, it is common

practice to pre-select compounds during the pre-clinical

stage to cover a range of exposures with dose-linearity that

can achieve the desired effects in various xenograft models.

In contrast, assumptions about the shape of the phar-

macokinetics may be more restrictive. Pre-clinical and

clinical pharmacokinetics are complex and often require

systematic physiology-based pharmacokinetics modelling

(PBPK modelling). This involves integrating several

effective compartments (organs) and considering the

complex topology of their interconnections, as well as

individual metabolic parameters specific to mice or humans

[27]. Even if we assume a simple one-compartment model

with absorption, obtaining an exact analytical solution for

our analysis would require integrating a Bateman function

of pharmacokinetics. However, the sum of two terms in the

Bateman function would make the Hill function of Eq. (7)

too complex for an analytical solution to our problem.

However, in oncology projects, pharmacokinetic (PK)

variations often tend to be smaller compared to variations

in pharmacodynamic (PD) parameters. This means that the

distribution of IC50 values (a measure of drug potency)

and the variability of growth and decay rates across

tumours (g/d) are potentially more important drivers than

the PK variations introduced by our assumption. This

smaller dependence of efficacy on PK variations together

with the fact that absorption phase (typically 0.5-2 h) and

elimination phase (4-8 h) for our compounds were well

separated made this assumption of a simpler two-expo-

nential kinetics model reasonable for the class of MAPK

inhibitors under investigation and potentially other small

molecule compounds.

We finally note that results can be directly applicable to

multiple daily doses per day, as long as doses are given in

regular intervals. Thereby, the parameter s duration of the

dosing interval has to be adapted.

Non-co-operativity in the mayneord-like model leads

to AUC-driven effects

Based on the assumptions of dose-linear pharmacokinetics

(PK), non-cooperativity in the Mayneord-like model (hill =

1), and a one-compartment PK model with timely separable

absorption and elimination phases, our analysis has

revealed that the effective dose for tumour stasis is pro-

portional to the fraction of free, dose-normalized area

under the curve (AUC) of the compound and the free in-

vitro IC50.

An interesting finding was that the necessary IC50

coverage required for tumour stasis shows only mild

dependence on the peak-to-trough-ratio ratio (PTR) of the

compound and, consequently, on the shape of the dose-

response curve. This implies that the relationship between

dose and effect is primarily driven by the total free expo-

sure (or average concentration) of the compound, which

aligns with the concept of an ‘‘AUC-driven’’ effect. Fur-

thermore, this effect appears to be largely independent of

the choice of xenograft model and the specific properties of

the compounds, as long as the assumptions of kinetics and

non-cooperativity hold true. It is important to note that the

xenograft growth-to-decay ratios (g/d values) should fall

therefore within the typical range of 0.3 to 0.7.

As shown in Sect. 3.5.2 this relation, however, changes

once we assume hill � 1. Specifically, higher Hill coeffi-

cients lead to an increased influence of the compound’s

PTR, and hence its terminal half-life on the IC50 coverage

factor for achieving tumour stasis. Our results therefore

argue for dose-fractionation studies (with same daily doses,

but different posology) to assess potential cmax=ctrough-

drivenness, specifically in such cases.

Analysing non-pharmacology mediated resistance

As stated above, a key feature of the Mayneord-like model

is the separation of pharmacology-dependent (Hill func-

tion) and xenograft model-dependent (and pharmacology

independent) in-vivo properties. Essentially, this effect is

captured by the model-dependent factor MEF(g, d, PTR)
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whose influence of the compound is only given by its PTR

and this influence is smaller for broad PTR variations

compared to varying g/d ratios when using different

xenografts. These results emphasise the importance of

choosing the right xenograft model for clinical translation.

Importantly, the model-dependent factor MEF incorpo-

rates a limitation where tumour stasis cannot be achieved if

the tumour growth parameter (g) is greater than the model-

corresponding decay parameter (d). This implies the exis-

tence of an in-built in-vivo resistance mechanism, where

certain xenograft models would not respond to treatment

regardless of the IC50 coverage. A typical mechanism of

this solely vivo effect, may be inaccessibility of tumour

parts to the compound or resistance through tumour

immune editing. This analysis is facilitated by the popu-

lation formalism in Eq. (34), where we have distinguished

between pharmacology resistance (ineffective IC50-cov-

erage) and tumour idiosyncratic resistance (g� d).

This idea of tumour idiosyncratic resistance could be

beneficial when transferring these modeling attempts to

clinical scenarios. Specifically, we would obtain g/d ratios

from longitudinal PET scans of individual patient tumors in

clinical trials from dedicated repositories such as Project

Data Sphere and integrate them into our model framework.

Thereby, the developed model framework would enable

mechanistic comprehension of potential resistance mech-

anisms. This type of clinical back-translation is ongoing in

our group.

Applying findings to other therapeutic areas

Although the Mayneord-like model was designed for tumor

growth, our results could be applicable to fields beyond

oncology, where a pathological effect (here tumor growth)

is counteracted by a compound-induced treatment. This

generalization is valid as long as the treatment can be

represented by a Hill function, possesses in-vitro efficacy

parameters, and adheres to the pharmacokinetic assump-

tions mentioned earlier. Consequently, we can substitute

our assumptions of pathological deviation and treatment

with an alternative in-vivo efficacy model that includes

specific clinical remodeling parameters, in-vitro pharma-

cological effects, and clinical outcomes tailored to the

pathology under study.

Glossary

Symbol Unit Description

AUC ub nM h Unbound AUC of the compound

Symbol Unit Description

AUCDN;ub nM h/

(mg/

kg)

Dose normalised unbound AUC

AUCeffect h effective AUC

effective duration of IC50

coverage by compound in-vivo

ctrough; cmax; caverage nM min, max and average conc. of the

compound

ctrough;stasis; cmax;stasis nM min, max and average conc.

caverage;stasis nM of the compound required for

tumour stasis (TGI=100 %)

dosestasis mg/kg dose required for stasis

d mm/h tumour decay rate of a specific

xenograft

g mm/h tumour growth rate of a specific

xenograft

hill none Hill coefficient of the Emax

function, compound co-

operativity

IC50 nM in-vitro 50% inhibition of cell

growth

ka, ke h�1 absorption and elimination rate

constant

MEF PTR; g=d;Hillð Þ none Model efficacy factor

factor defining the necessary IC50

coverage ratio for a compound

characterised by PTR and hill and

a xenograft by g/d

PTR none = cmax=ctrough, peak-trough ratio

R, R0 mm tumour radius, initial tumour

radius

TGI none tumour growth inhibition

TGImin;TGImax;PDinflex none minimum, maximum and

inflection point of the empirical

logistic fit

s h dosing interval

Vcontrol
tumour ;V

treated
tumour mm3 total tumour volume for control

and treated tumours

Appendix A illustration of separation of in-
vitro and in-vitro effects in the PK/TGI model

The major goal of the decay rate d is to separate properties

of the in-vivo tumour from the pharmacologic action the

compound acts upon the cell. Specifically, as in-vitro dose

response curves follow an Hill function, we separated the

in-vitro effect explicitly. The decay rate d is hence a pro-

portionality factor specific to the tumour and is assumed

not to depend in good approximation on the drug and the

concentration. As example, one would envision two
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tumours with different drug permeabilities due to different

stroma content. This independency is the assumption of

almost all modelling efforts for xenograft studies at

Boehringer Ingelheim. We further illustrate this here by an

external data set published by Genentech [28].

Our analysis of their data firstly demonstrates that a

similar IVIVC analysis for their compounds can be given

as for ours. It further demonstrates that these relations

differ for the two used cell line grafts, while different

compounds and different doses well align for HCC1954.

Results also demonstrate a fair alignment between IC50

coverage and effect in the KPL-4 cell lines, with some

inter-study variability, but no major deviations between

different compounds.

Our subsequent goal was to examine the growth and

decay rates for each cell line and to ascertain if our model

assumption, Eq. (20), is applicable for all compounds and

concentrations used in the study. We derived the growth

rates for each cell line directly from the control data. To

establish the decay rates of our model and to illustrate their

independence from the compound and dose, we calculated

the net tumor growth rates from the study data. This net

rate was determined using the information provided on the

relative change in rate between control and treated xeno-

grafts (Supplement Table 2).13 By applying our model,

Eq. 20, we were able to achieve fits between the predicted

and observed net rates (and consequently values of d). The

quality of these fits (Fig. 7) demonstrated that these fits

were more dependent on the cell lines than on specific

compounds across doses, thereby validating our model

assumption. Specifically, we found g and d values for

HCC1954 to be 0.09 and 0.16 mm/day, and 0.20 and 0.30

mm/day for KPL-4 (g/d ratios of 0.56 and 0.67,

respectively).

Appendix B derivations of equations
for stasis condition for negligible absorption

B.1 derivation equation (23)

We calculate

AUCeffect ¼

Z

s

0

e�kt

e�kt þ IC50
cmax

� � dt ; ðB1Þ

by substituting

uðtÞ ¼e�kt ! du ¼ �k e�kt dt ! dt ¼ �
1

u k
du ðB2Þ

u0 :¼ uð0Þ ¼1 ðB3Þ

us :¼ uðsÞ ¼e�ks ¼
ctrough

cmax
ðB4Þ

into Eq. (B1) gives

AUCeffect ¼

Z us

u0

u

uþ IC50
cmax

� �

�1

uk

� �

du ðB5Þ

¼

Z u0

us

1

k uþ IC50
cmax

� � du ðB6Þ

Fig. 7 IVIVC relationship for

the study [28] as reanalyzed by

us. Shapes are different

compounds, color indicate

different doses. Fair alignment

for studies with different doses

an compounds within the same

cell lines are observed, with a

weak tendency shift between

cell line data, consistent with

our analysis Fig. 6

13 Specifically, these data were derived by converting the initial and

final tumor volumes to radius values by mapping the volume to a

sphere, then calculating the difference in radius values and dividing

by the study duration.
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¼
1

k
ln u þ

IC50

cmax

� �� 	










1

ctrough

cmax

ðB7Þ

¼
s

ln PTRð Þ
ln 1þ

IC50

cmax

� �

� ln
ctrough

cmax
þ
IC50

cmax

� �� 	

ðB8Þ

¼
s

ln PTRð Þ
ln

cmax þ IC50

ctrough þ IC50

� 	

: ðB9Þ

B.2 Derivation Equation (26)

We are first setting Eq. (B9) in AUCeffect into the condition

for stasis Eq. (24)

ln
cmax þ IC50

ctrough þ IC50

� �

s

ln PTRð Þ
¼

g

d
� s: ð10Þ

and, hence

ln
cmax þ IC50

ctrough þ IC50

� �

¼
g

d
ln PTRð Þ: ð11Þ

We now take the exponentials on both sides

cmax þ IC50

ctrough þ IC50
¼exp

g

d
� ln PTRð Þ

� �

PTR � ctrough þ IC50

ctrough þ IC50
¼exp ðln PTRð Þg=d

� �

¼PTRg=d

PTR ctrough þ IC50 ¼PTRg=d ctrough þ IC50
� �

ð12Þ

we get the following conditions for tumour stasis from

Eq. (11)

ctrough;stasis;ub ¼ IC50
PTRg=d � 1

PTR� PTRg=d
ð13Þ

By similar calculations, we obtain

cmax;stasis;ub ¼ IC50 � PTR
PTRg=d � 1

PTR� PTRg=d
ð14Þ

and with

caverage ¼
1

s

Z

s

0

cplasma; freeðtÞ dt ¼
1

s

Z

s

0

cmax e
�kt dt

¼
cmax � ctrough

ln PTRð Þ
;

ð15Þ

wet get the necessary average concentration for tumour

stasis.

caverage;stasis;ub ¼
cmax � ctrough
� �

ln PTRð Þ

¼
ctrough PTR � 1ð Þ

ln PTRð Þ

¼IC50 �
PTR� 1

ln PTRð Þ

PTRg=d � 1

PTR� PTRg=d
:

ð16Þ

Derivation of AUCeffect for non-negligible fast
absorption

We follow the assumption of a one-compartment model

with an absorption rate ka and an elimination rate ke which

gives the well-known Bateman function for a single

exposure.

Fig. 8 Remodelling of decay

rate for the study [28]. Shapes

represent various compounds,

while colors signify different

doses. Drug-induced tumor

growth inhibition was re-

modeled by assuming our model

relation, Eq. 20, and

considering the published drug

concentration, as well as cell

and compound-specific in-vitro

IC50 values. Decay rates for

each cell were optimized to best

explain the published

(observed) net rates (tumor

growth minus decay rates,

x-Axis) of the tumors following

pharmacological intervention.

Xenograft-specific g/d ratios

were determined to be 0.56 and

0.67 for HCC1954 and KPL-4,

respectively
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Provided that ka and ke are well distinct (which they

usually are for most oncology compounds), both increase

during the absorption phase and decrease in the elimination

phase can be considered as exponential, yet at different

speed14. We therefore can split the expression of our effec-

tive AUC (AUCeffect) calculation of (B9). Thus, we can write

AUCeffect totalð Þ ¼AUCeffect trough ! peakð Þ









tmax

0

þAUCeffect peak ! troughð Þ









s

tmax

:
ð17Þ

The second term is essentially the calculated (AUCeffect) of

(B9) within shorter boundaries and modified ke,

AUCeffect peak ! troughð Þ









s

tmax

¼
s� tmax

ln PTRð Þ
ln

cmax þ IC50

ctrough þ IC50

� 	

ð18Þ

ke ¼
1

s� tmax
ln

ctrough

cmax

� �

¼
1

s� tmax

ctrough

cmax

� �

: ð19Þ

The first terms needs a bit attention,

AUCeffect trough ! peakð Þ









tmax

0
¼

Z tmax

0

ekat � ctrough

ekat � ctrough þ IC50
� � dt

¼

Z 0

tmax

eka tmax�t0ð Þ � ctrough

eka tmax�t0ð Þ � ctrough þ IC50
� � �dt0ð Þ

¼ �

Z 0

tmax

e�kat0 � cmax
e�kat0 � cmax þ IC50ð Þ

dt0

¼

Z tmax

0

e�kat0

e�kat0 þ IC50
cmax

dt0

¼
tmax

ln PTRð Þ
ln

cmax þ IC50

ctrough þ IC50

� 	

;

ð20Þ

where we have formally changed the direction of integra-

tion from t0 ! tmax � t and hence from cmax ! ctrough. We

thereby further used the relations

cmax ¼ctrough � e
katmax ð21Þ

ka ¼
1

tmax
ln

cmax

ctrough

� �

: ð22Þ

By adding up the terms Eqs. (18) and (20) in Eq. (17), we see

that this result in the same termas (B9).We therefore conclude

that our reasoning can be extended to situations with non-

negligible absorption when both phases can be separated and

the PKdosing curve along the dosing interval is at steady state.

The independence of the integrated response (AUC or

AUCeffect) from the duration of the absorption phase (given

the limitations below) can intuitively understood. Specifi-

cally, while non-negligible absorption reduces the maxi-

mum free concentration cmax, this maximum is shifted to

later time points which results in a higher ctrough due to

shorter decay period and assuming steady state.

We note that a similar argument can be made for the

calculation of the average concentration as of Eq. (15),

which is needed to render the analysis of the previous

section correct also for non-negligible absorption phase.

caverage ¼
1

s

AUC trough ! peakð Þ









tmax

0
þ AUC peak ! troughð Þ










s

tmax

� 	

¼
1

s

Z tmax

0

ctrough e
kat dt þ

Z

s

tmax

cmax e
�ketdt

� �

ð23Þ

Analogous to Eq. (15), the second integral gives
Z

s

tmax

cmax e
�ketdt ¼ �

ctrough � cmax

ke

¼
s� tmax

ln PTRð Þ
cmax � ctrough
� �

;

ð24Þ

while we can again apply symmetry relations t0 ! tmax � t

for the first integral

Z tmax

0

ctrough e
kat dt ¼

Z 0

tmax

ctrough e
kaðtmax�t0ÞÞ ð�dt0Þ

¼

Z 0

tmax

cmaxe
�kat0ð�dt0Þ

¼

Z tmax

0

cmaxe
�kat0 dt0

¼ �
ctrough � cmax

ka

¼tmax
cmax � ctrough

ln PTRð Þ

ð25Þ

and hence summarising both integrals in Eq. (23)

caverage ¼
cmax � ctrough

ln PTRð Þ
ð26Þ
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