

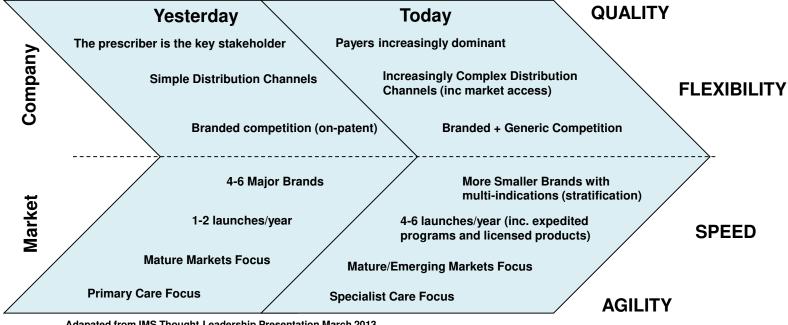
Accelerating the development of drug products using advanced pharmaceutical design tools and manufacturing innovation

Marcel de Matas

INTERNATIONAL
MULTIDISCIPLINARY SYMPOSIUM ON
DRUG RESEARCH & DEVELOPMENT
IN MEMORY OF PROFESSOR UNSAL CALIS

Seda Pharmaceutical Development Services®
The Biohub at Alderley park
Alderley Edge
Cheshire SK10 4TQ
marcel.dematas@sedapds.com

www.sedapds.com


Overview

Drivers for change in Pharmaceutical Development
The Desired State
Advanced Pharmaceutical Design Examples
Concluding Remarks & Acknowledgements

Drivers for Change

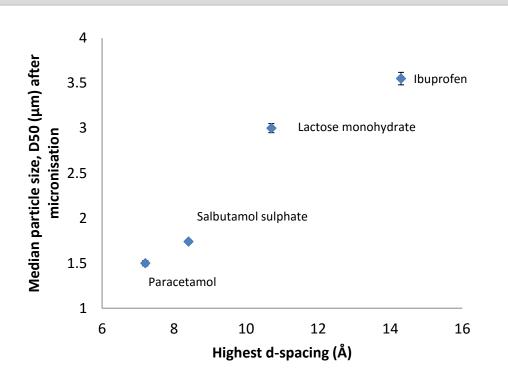
Adapated from IMS Thought Leadership Presentation March 2013

The Desired State – Advanced Pharmaceutical Design

 'The Ambition' - Formulation and process ready for pivotal clinical supply in <5 months with <5 kg of drug substance versus 12-24 months and from 20-100 kg for the traditional approach.

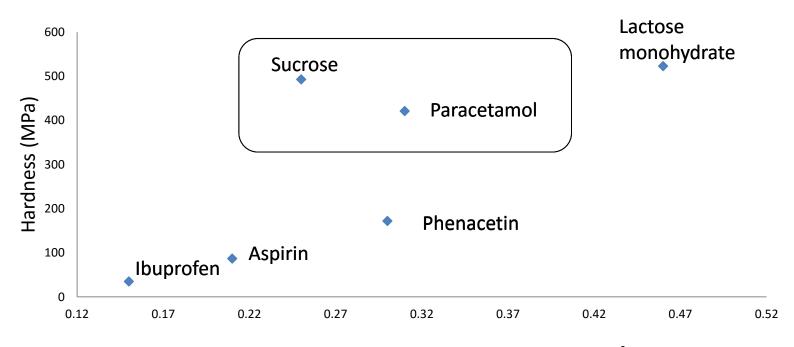
Informed risk taking through enhanced understanding

In-Silico Formulation Design Accelerated & Predictive Stability Testing *PAT Enabled Design for Flexible Manufacture *PAT Enabled Technology Transfer


In-Vitro and In-Silico Bridging Readiness for Pivotal Clinical Supply

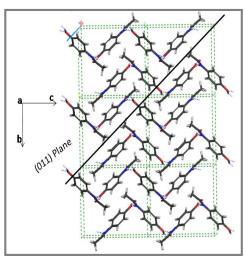
*Process Analytical Technology

Predicting comminution behaviour in early development

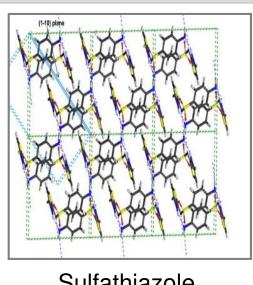

- Opportunity to predict micronisability of powders when limited amounts of material are available
- Interplanar-spacing (XRPD) could serve as a first order indicator of propensity to be micronized
- Has its limitations

Shariare et al, Pharm. Res. 2011; 29(1) 319-331

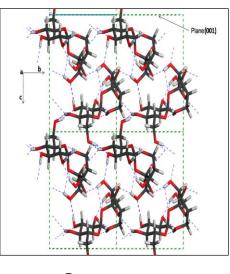
Predicting comminution behaviour in early development


Shariare et al, Pharm. Res. 2011; 29(1) 319-331

Specific interaction energy (kcal/mol/Å²)



Predicting comminution behaviour in early development



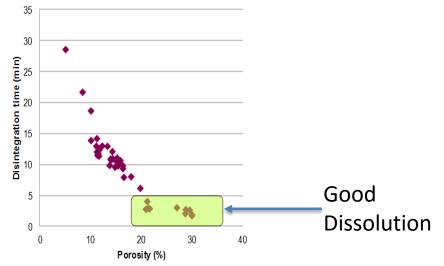
Paracetamol

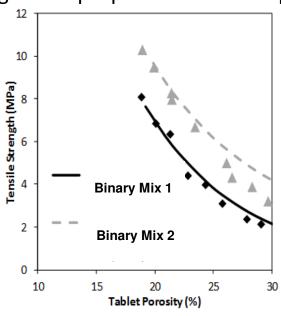
Sulfathiazole

Sucrose

Interpenetrating planes providing notable barrier to lateral displacement

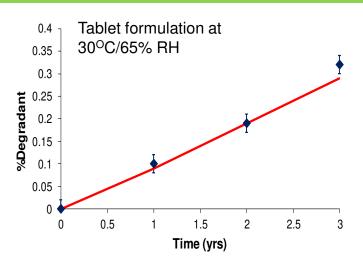
Shariare et al, Pharm. Res. 2011; 29(1) 319-331

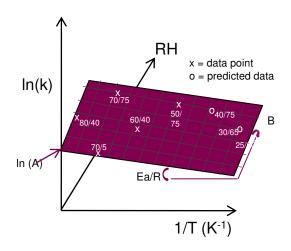



Rapid Tablet Design

Sub-optimal release linked to tablet porosity

Relevant references: Wu et al, Pharm Res. 2006; 23(8) 1898-1904; Gavi & Reynolds. Comp. Chem. Eng. 2014; 71 130-140



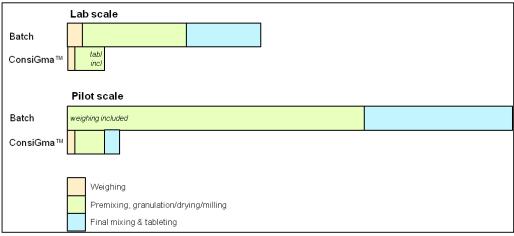

Accelerated Stability Assessment Program (ASAP)

Short term studies under elevated conditions designed to degrade samples and predict stability and shelf life under long term storage conditions

Predict the effect of temperature and humidity on shelf life

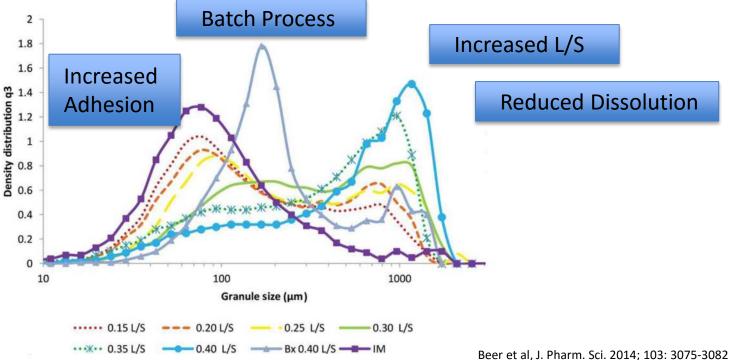
Based on methods described by KC Waterman, AAPS PharmSciTech. 2011; 12(3): 932-937.

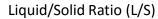
The 21st Century Supply Chain – Continuous Manufacture


- Continuous manufacturing potentially addresses a number of business drivers
- Rapid process design and optimisation
- Greater flexibility of batch size
- Greater robustness and increased consistency of product quality
- Minimal scale up
- Smaller footprint with potential for portability

Rapid Process Design

- From weeks to days for evaluation of experimental space
 - Applicable to continuous direct compression, roller compaction, twinscrew granulation and other suitable methods




*Consigma - proprietary flexible/continuous processing platform (GEA, Belgium)

Rapid Process Design

Predicting product performance in humans

- Advanced in-vitro dissolution model based on human upper GI tract (TIM-1 from TNO, Netherlands)
- Biorelevant buffers, volumes and composition
- Approximation of physiological hydrodynamics including gastric shear forces
- Simulation of passive absorption (semi-sink conditions)
- Enables determination of bioaccessible dose

Concluding Remarks

- The advantages of Advanced Pharmaceutical Design
 - Maximal Speed
 - Reduced Cost
 - Increased Quality
 - Increased Flexibility
 - Increased Agility
- Notable impact already demonstrated for aspects of Advanced Pharmaceutical Design
- The stage is set for consolidation of tools into a framework for product and process design to enable the accelerated development and approval of new medicines

Acknowledgments

- Mohammad Shariare
- Jamshed Anwar
- Frank Leusen
- Peter York
- Paul Beer
- David Wilson
- Zhenyu Huang
- Gunnar Haeffler
- Pirjo Tajarobi
- Staffan Folestad

Paul Dickinson Claire Patterson Richard Barker

Pharmaceutical Development Services

DRD 2015

October 17th 2015

SEDA Pharmaceutical Development Services® is the business name and registered trademark of SEDA Pharma Development Services Ltd, a company incorporated in England and Wales with registered number: 9442533 and registered office: 3 Castlebrook Close, Unsworth, Bury, Lancashire, UK, BL9 8JE. © Copyright 2015.