

In silico modelling: Subcutaneous Bioavailability of mAbs

Claire Patterson, MPharm PhD.

Seda Pharmaceutical Development Services Ltd., Alderley Park, Cheshire, UK CRS Industry Roundtable; "Predicting Bioavailability of Monoclonal Antibodies after Subcutaneous Administration: Open Innovation Challenge", June 2020

SC In silico modelling

- In silico absorption modelling is successfully used in oral formulation development for compound selection, formulation design, specification setting and sometimes even in lieu of clinical bioequivalence studies
- Compared to oral, SC models are less well established, and are acknowledged as complex due to multiple, interrelated nonlinear pathways
- Empirical and mechanistic models have been developed
- None can predict SC mAb bioavailability bottom-up
- Aim to predict or understand factors affecting rate and extent of absorption and impact on PK profile
- Knowledge gaps/opportunities to improve the models have been proposed

Schematic representing SC Bioavailability (F)

F, bioavailability; Fa, fraction absorbed; Fa_L, fraction absorbed via lymph; Fa_v, fraction absorbed via venous capillary; F_{Lymph}, fraction escaping lymphatic clearance.

Example mAb SC PK profile

Subcutaneous Dru

Consortium

Development and Delivery

Empirical Models

CRS Leading Delivery Sci and Technol

- Empirical models are:
 - Developed from studies measuring plasma/serum concentration
 - Not physiological
 - Parameterised by data fitting
 - Useful to describe observed behaviour and extrapolation to different dose/frequency

Mechanistic Models

- Mechanistic models:
 - are physiologically representative
 - can be used for bottom-up prediction
 - can be used for parameter sensitivity analysis
 - are being developed commercially e.g. by Simcyp and Simulations Plus

Model Schematic

Parameter Sensitivity Analysis

Model parameter	Molecule	Output parameter evaluated	Sensitivity analysis conclusion	-	Model parameter	Molecule	Output parameter evaluated	Sensitivity analysis conclusion
MW	Various	% absorbed via lymphatic mechanism	S shaped curve observed showing that as MW increased >5 kDa, the % absorbed via lymphatic mechanism increased. Correlated with <i>in vivo</i> animal data	-	pl	Various	C _{max} and T _{max}	No correlation with pl. This could be due to limited range of pl for therapeutic proteins investigated (5.2–8.8, except for one with pl 11.2)
Hydrodynamic radius	Various	Ci relative to Cp	Prediction correlated with animal data showing Ci/Cp decreased with increase in hydrodynamic radius according to theory	Lymphatic recirculation	Trastuzumab	Bioavailability	Simulations using the model indicated that on average each trastuzumab molecule recirculated 4–5 times through the lymphatic	
Lymphatic flow (rate, elimination rate during lymphatic transport	Omalizumab	T _{max}	T _{max} is predicted to be highly sensitive to lymphatic flow rate and not sensitive to the other physiological parameters evaluated, including elimination rate during lymphatic transport	-	EcDn expression	Dituximah	Ricovalability	systems before being eliminated and explained the overestimation of SC bioavailability relative to IV
				and binding affi	and binding affinity	ty	Dioavaliability	binding affinity or the receptor expression level had a predicted significant effect on bioavailability e.g. reduction in bioavailability from 69% to ~20% when binding affinity is reduced 10-fold (i.e., K _D is increased from 1 to 10)
Various physiological parameters (eg, lymphatic flow, transit time of drug from lymph system, endosomal uptake)	Omalizumab	SC bioavailability	K _{lymph} = T > lymphatic flow rate >> endosomal uptake rate of antibody = FcRN concentration = endosomal return rate of mAb. Bioavailability will increase as K _{lymph} or T decreases, or when lymphatic flow rate increases at its low range.					
								Subcutaneous Drug Development and Device Consortium

Gaps and Opportunities

Further studies on the could benefit model parameterisation and predictive capability:

- Improved collection of metadata from in vivo studies
- Injection site and lymph physiology
- Nucleation/precipitation/dissolution
- Geometry/temporal spread
- Diffusivity/convective flow through ECM
- FcRn binding and endosomal uptake
- Presystemic catabolism
- Interspecies scaling
- Formulation/device effects

Successful predictive models of the future will likely combine multiple in vitro characterizations (with minimal in vivo experimentation) to predict rate and extent of SC absorption. As understanding evolves, we can focus on the aspects most likely to be rate-limiting for a therapeutic protein or drug class.

> Subcutaneous Drug Development and Dewory Consortium

Thank you

Subcutaneous Drug Development and Delivery Consortium